Local Properties of Good Moduli Spaces
نویسنده
چکیده
We study the local properties of Artin stacks and their good moduli spaces, if they exist. We show that near closed points with linearly reductive stabilizer, Artin stacks formally locally admit good moduli spaces. We also give conditions for when the existence of good moduli spaces can be deduced from the existence of étale charts admitting good moduli spaces.
منابع مشابه
On Atkin-Lehner correspondences on Siegel spaces
We introduce a higher dimensional Atkin-Lehner theory for Siegel-Parahoric congruence subgroups of $GSp(2g)$. Old Siegel forms are induced by geometric correspondences on Siegel moduli spaces which commute with almost all local Hecke algebras. We also introduce an algorithm to get equations for moduli spaces of Siegel-Parahoric level structures, once we have equations for prime l...
متن کاملModuli spaces of local G-shtukas
We give an overview of the theory of local G-shtukas and their moduli spaces that were introduced in joint work of U. Hartl and the author, and in the past years studied by many people. We also discuss relations to moduli of global G-shtukas, properties of their special fiber through affine Deligne-Lusztig varieties and of their generic fiber, such as the period map.
متن کاملAdequate Moduli Spaces and Geometrically Reductive Group Schemes
We introduce the notion of an adequate moduli space. The theory of adequate moduli spaces provides a framework for studying algebraic spaces which geometrically approximate algebraic stacks with reductive stabilizers in characteristic p. The definition of an adequate moduli space generalizes the existing notion of a good moduli space to characteristic p (and mixed characteristic). The most impo...
متن کاملGood Moduli Spaces for Artin Stacks
We develop the theory of associating moduli spaces with nice geometric properties to arbitrary Artin stacks generalizing Mumford’s geometric invariant theory and tame stacks.
متن کاملSklyanin Algebras and Hilbert Schemes of Points
We construct projective moduli spaces for torsion-free sheaves on noncommutative projective planes. These moduli spaces vary smoothly in the parameters describing the noncommutative plane and have good properties analogous to those of moduli spaces of sheaves over the usual (commutative) projective plane P. The generic noncommutative plane corresponds to the Sklyanin algebra S = Skl(E,σ) constr...
متن کامل